Module pyucalgarysrs.data.read
Functions for reading data for specific datasets.
Expand source code
# Copyright 2024 University of Calgary
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Functions for reading data for specific datasets.
"""
import datetime
import os
import numpy as np
from pathlib import Path
from typing import List, Union, Optional
from ._themis import read as func_read_themis
from ._rego import read as func_read_rego
from ._trex_nir import read as func_read_trex_nir
from ._trex_blue import read as func_read_trex_blue
from ._trex_rgb import read as func_read_trex_rgb
from ._trex_spectrograph import read as func_read_trex_spectrograph
from ._skymap import read as func_read_skymap
from ._calibration import read as func_read_calibration
from ._grid import read as func_read_grid
from ..classes import (
Dataset,
Data,
ProblematicFile,
Skymap,
SkymapGenerationInfo,
Calibration,
CalibrationGenerationInfo,
GridData,
GridSourceInfoData,
)
from ...exceptions import SRSUnsupportedReadError, SRSError
class ReadManager:
"""
The ReadManager object is initialized within every PyUCalgarySRS.data object. It
acts as a way to access the submodules and carry over configuration information in
the super class.
"""
__VALID_THEMIS_READFILE_DATASETS = ["THEMIS_ASI_RAW"]
__VALID_REGO_READFILE_DATASETS = ["REGO_RAW"]
__VALID_TREX_NIR_READFILE_DATASETS = ["TREX_NIR_RAW"]
__VALID_TREX_BLUE_READFILE_DATASETS = ["TREX_BLUE_RAW"]
__VALID_TREX_RGB_READFILE_DATASETS = ["TREX_RGB_RAW_NOMINAL", "TREX_RGB_RAW_BURST"]
__VALID_SKYMAP_READFILE_DATASETS = [
"REGO_SKYMAP_IDLSAV",
"THEMIS_ASI_SKYMAP_IDLSAV",
"TREX_NIR_SKYMAP_IDLSAV",
"TREX_RGB_SKYMAP_IDLSAV",
"TREX_BLUE_SKYMAP_IDLSAV",
]
__VALID_CALIBRATION_READFILE_DATASETS = [
"REGO_CALIBRATION_RAYLEIGHS_IDLSAV",
"REGO_CALIBRATION_FLATFIELD_IDLSAV",
"TREX_NIR_CALIBRATION_RAYLEIGHS_IDLSAV",
"TREX_NIR_CALIBRATION_FLATFIELD_IDLSAV",
"TREX_BLUE_CALIBRATION_RAYLEIGHS_IDLSAV",
"TREX_BLUE_CALIBRATION_FLATFIELD_IDLSAV",
]
__VALID_GRID_READFILE_DATASETS = [
"THEMIS_ASI_GRID_MOSV001",
"THEMIS_ASI_GRID_MOSU001",
"REGO_GRID_MOSV001",
"TREX_RGB_GRID_MOSV001",
"TREX_NIR_GRID_MOSV001",
"TREX_BLUE_GRID_MOSV001",
"TREX_RGB5577_GRID_MOSV001",
]
def __init__(self):
pass
def list_supported_datasets(self) -> List[str]:
"""
List the datasets which have file reading capabilities supported.
Returns:
A list of the dataset names with file reading support.
"""
supported_datasets = []
for var in dir(self):
var_lower = var.lower()
if ("valid" in var_lower and "readfile_datasets" in var_lower):
for dataset in getattr(self, var):
supported_datasets.append(dataset)
supported_datasets = sorted(supported_datasets)
return supported_datasets
def is_supported(self, dataset_name: str) -> bool:
"""
Check if a given dataset has file reading support.
Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform
have special readfile routines in this library. This is because some datasets are
in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave
it up to the user to open these basic files in whichever way they prefer. Use the
`list_supported_read_datasets()` function to see all datasets that have special
file reading functionality in this library.
Args:
dataset_name (str):
The dataset name to check if file reading is supported. This parameter
is required.
Returns:
Boolean indicating if file reading is supported.
"""
supported_datasets = self.list_supported_datasets()
if (dataset_name in supported_datasets):
return True
else:
return False
def read(self,
dataset: Dataset,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False) -> Data:
"""
Read in data files for a given dataset. Note that only one type of dataset's data
should be read in using a single call.
Args:
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
required.
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSUnsupportedReadError: an unsupported dataset was used when
trying to read files.
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
Notes:
---------
For users who are familiar with the themis-imager-readfile and trex-imager-readfile
libraries, the read function provides a near-identical usage. Further improvements have
been integrated, and those libraries are anticipated to be deprecated at some point in the
future.
"""
# verify dataset is valid
if (dataset is None):
raise SRSUnsupportedReadError("Must supply a dataset. If not know, please use the srs.data.readers.read_<specific_routine>() function")
# read data using the appropriate readfile routine
if (dataset.name in self.__VALID_THEMIS_READFILE_DATASETS):
return self.read_themis(file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
dataset=dataset)
elif (dataset.name in self.__VALID_REGO_READFILE_DATASETS):
return self.read_rego(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset)
elif (dataset.name in self.__VALID_TREX_NIR_READFILE_DATASETS):
return self.read_trex_nir(file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
dataset=dataset)
elif (dataset.name in self.__VALID_TREX_BLUE_READFILE_DATASETS):
return self.read_trex_blue(file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
dataset=dataset)
elif (dataset.name in self.__VALID_TREX_RGB_READFILE_DATASETS):
return self.read_trex_rgb(file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
dataset=dataset)
elif (dataset.name in self.__VALID_SKYMAP_READFILE_DATASETS):
return self.read_skymap(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset)
elif (dataset.name in self.__VALID_CALIBRATION_READFILE_DATASETS):
return self.read_calibration(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset)
elif (dataset.name in self.__VALID_GRID_READFILE_DATASETS):
return self.read_grid(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset)
else:
raise SRSUnsupportedReadError("Dataset does not have a supported read function")
def read_themis(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in THEMIS ASI raw data (stream0 full.pgm* files).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_themis(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_rego(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in REGO raw data (stream0 pgm* files).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_rego(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_trex_nir(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in TREx near-infrared (NIR) raw data (stream0 pgm* files).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_trex_nir(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
# convert to appropriate return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_trex_blue(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in TREx Blueline raw data (stream0 pgm* files).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_trex_blue(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_trex_rgb(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in TREx RGB raw data (stream0 h5, stream0.burst png.tar, unstable stream0 and stream0.colour pgm* and png*).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_trex_rgb(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
if ("image_request_start_timestamp" in m):
timestamp_list.append(datetime.datetime.strptime(m["image_request_start_timestamp"], "%Y-%m-%d %H:%M:%S.%f UTC"))
elif ("Image request start" in m):
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
else:
raise SRSError("Unexpected timestamp metadata format")
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_trex_spectrograph(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in TREx Spectrograph raw data (stream0 pgm* files).
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
img, meta, problematic_files = func_read_trex_spectrograph(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for m in meta:
timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC"))
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=img,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
def read_skymap(
self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
quiet: bool = False,
dataset: Optional[Dataset] = None,
) -> Data:
"""
Read in UCalgary skymap files.
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
quiet (bool):
Do not print out errors while reading skymap files, if any are encountered. Any
files that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Skymap` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
data = func_read_skymap(
file_list,
n_parallel=n_parallel,
quiet=quiet,
)
# convert to return object
skymap_objs = []
for item in data:
# init item
item_recarray = item["skymap"][0]
# parse valid start and end times into datetimes
date_generated_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_generated.decode(), "%a %b %d %H:%M:%S %Y")
# parse filename into several values
filename_split = os.path.basename(item["filename"]).split('_')
filename_times_split = filename_split[3].split('-')
valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")
valid_interval_stop_dt = None
if (filename_times_split[1] != '+'):
valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d")
# parse date time used into datetime
date_time_used_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_time_used.decode(), "%Y%m%d_UT%H")
# determine the version
version_str = os.path.splitext(item["filename"])[0].split('_')[-1]
# create generation info dictionary
generation_info_obj = SkymapGenerationInfo(
author=item_recarray.generation_info[0].author.decode(),
ccd_center=item_recarray.generation_info[0].ccd_center,
code_used=item_recarray.generation_info[0].code_used.decode(),
data_loc=item_recarray.generation_info[0].data_loc.decode(),
date_generated=date_generated_dt,
date_time_used=date_time_used_dt,
img_flip=item_recarray.generation_info[0].img_flip,
optical_orientation=item_recarray.generation_info[0].optical_orientation,
optical_projection=item_recarray.generation_info[0].optical_projection,
pixel_aspect_ratio=item_recarray.generation_info[0].pixel_aspect_ratio,
valid_interval_start=valid_interval_start_dt,
valid_interval_stop=valid_interval_stop_dt,
)
# add in bytscl_values parameter
#
# NOTE: bytscl_values was not present in early THEMIS skymap files, so
# we conditionally add it
if ("bytscl_values" in item_recarray.generation_info[0].dtype.names):
generation_info_obj.bytscl_values = item_recarray.generation_info[0].bytscl_values
# flip certain things
full_elevation_flipped = np.flip(item_recarray.full_elevation, axis=0)
full_azimuth_flipped = np.flip(item_recarray.full_azimuth, axis=0)
full_map_latitude_flipped = np.flip(item_recarray.full_map_latitude, axis=1)
full_map_longitude_flipped = np.flip(item_recarray.full_map_longitude, axis=1)
if ("REGO" in item["filename"]):
# flip e/w too, but just for REGO (since we do this to the raw data too)
full_elevation_flipped = np.flip(full_elevation_flipped, axis=1)
full_azimuth_flipped = np.flip(full_azimuth_flipped, axis=1)
full_map_latitude_flipped = np.flip(full_map_latitude_flipped, axis=2)
full_map_longitude_flipped = np.flip(full_map_longitude_flipped, axis=2)
# create object
skymap_obj = Skymap(
filename=item["filename"],
project_uid=item_recarray.project_uid.decode(),
site_uid=item_recarray.site_uid.decode(),
imager_uid=item_recarray.imager_uid.decode(),
site_map_latitude=item_recarray.site_map_latitude,
site_map_longitude=item_recarray.site_map_longitude,
site_map_altitude=item_recarray.site_map_altitude,
full_elevation=full_elevation_flipped,
full_azimuth=full_azimuth_flipped,
full_map_altitude=item_recarray.full_map_altitude,
full_map_latitude=full_map_latitude_flipped,
full_map_longitude=full_map_longitude_flipped,
version=version_str,
generation_info=generation_info_obj,
)
# append object
skymap_objs.append(skymap_obj)
# cast into data object
data_obj = Data(
data=skymap_objs,
timestamp=[],
metadata=[],
problematic_files=[],
calibrated_data=None,
dataset=dataset,
)
# return
return data_obj
def read_calibration(
self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
quiet: bool = False,
dataset: Optional[Dataset] = None,
) -> Data:
"""
Read in UCalgary calibration files.
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
quiet (bool):
Do not print out errors while reading calibration files, if any are encountered.
Any files that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Calibration` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
data = func_read_calibration(
file_list,
n_parallel=n_parallel,
quiet=quiet,
)
# convert to return object
calibration_objs = []
for item in data:
# init
item_filename = item["filename"]
# determine the version
version_str = os.path.splitext(item_filename)[0].split('_')[-1]
# parse filename into several values
filename_split = os.path.basename(item_filename).split('_')
filename_times_split = filename_split[3].split('-')
valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d")
valid_interval_stop_dt = None
if (filename_times_split[1] != '+'):
valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d")
# determine the detector UID
detector_uid = filename_split[2]
file_type = filename_split[1].lower()
flat_field_multiplier_value = None
rayleighs_perdn_persecond_value = None
if (file_type == "flatfield"):
for key in item.keys():
if ("flat_field_multiplier" in key):
# flip vertically
flat_field_multiplier_value = np.flip(item[key], axis=0)
# flip horizontally, if REGO
if ("REGO" in item_filename):
flat_field_multiplier_value = np.flip(flat_field_multiplier_value, axis=1)
break
elif (file_type == "rayleighs"):
for key in item.keys():
if ("rper_dnpersecond" in key):
rayleighs_perdn_persecond_value = item[key]
break
# set input data dir and skymap filename (may exist in the calibration file, may not)
author_str = None
input_data_dir_str = None
skymap_filename_str = None
if ("author" in item):
author_str = item["author"].decode()
if ("input_data_dir" in item):
input_data_dir_str = item["input_data_dir"].decode()
if ("skymap_filename" in item):
skymap_filename_str = item["skymap_filename"].decode()
# set generation info object
generation_info_obj = CalibrationGenerationInfo(
author=author_str,
input_data_dir=input_data_dir_str,
skymap_filename=skymap_filename_str,
valid_interval_start=valid_interval_start_dt,
valid_interval_stop=valid_interval_stop_dt,
)
# create object
calibration_obj = Calibration(
filename=item_filename,
version=version_str,
dataset=dataset,
detector_uid=detector_uid,
flat_field_multiplier=flat_field_multiplier_value,
rayleighs_perdn_persecond=rayleighs_perdn_persecond_value,
generation_info=generation_info_obj,
)
# append object
calibration_objs.append(calibration_obj)
# cast into data object
data_obj = Data(
data=calibration_objs,
timestamp=[],
metadata=[],
problematic_files=[],
calibrated_data=None,
dataset=dataset,
)
# return
return data_obj
def read_grid(self,
file_list: Union[List[str], List[Path], str, Path],
n_parallel: int = 1,
first_record: bool = False,
no_metadata: bool = False,
quiet: bool = False,
dataset: Optional[Dataset] = None) -> Data:
"""
Read in grid files.
Args:
file_list (List[str], List[Path], str, Path):
The files to read in. Absolute paths are recommended, but not technically
necessary. This can be a single string for a file, or a list of strings to read
in multiple files. This parameter is required.
n_parallel (int):
Number of data files to read in parallel using multiprocessing. Default value
is 1. Adjust according to your computer's available resources. This parameter
is optional.
first_record (bool):
Only read in the first record in each file. This is the same as the first_frame
parameter in the themis-imager-readfile and trex-imager-readfile libraries, and
is a read optimization if you only need one image per minute, as opposed to the
full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata (bool):
Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is `False`. This parameter is optional.
quiet (bool):
Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the `problematic_files`
attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter
is optional.
dataset (pyucalgarysrs.data.classes.Dataset):
The dataset object for which the files are associated with. This parameter is
optional.
Returns:
A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other
values.
Raises:
pyucalgarysrs.exceptions.SRSError: a generic read error was encountered
"""
# read data
data_dict, meta, problematic_files = func_read_grid(
file_list,
n_parallel=n_parallel,
first_record=first_record,
no_metadata=no_metadata,
quiet=quiet,
)
# create grid data object
grid_data_obj = GridData(
grid=data_dict["grid"], # type: ignore
fill_value=float(meta[0]["fill_value"]),
source_info=GridSourceInfoData(confidence=data_dict["source_info"]["confidence"]), # type: ignore
)
# generate timestamp array
timestamp_list = []
if (no_metadata is False):
for t in data_dict["timestamp"]: # type: ignore
timestamp_list.append(datetime.datetime.strptime(t.decode(), "%Y-%m-%d %H:%M:%S UTC"))
# convert to return type
problematic_files_objs = []
for p in problematic_files:
problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error"))
ret_obj = Data(
data=grid_data_obj,
timestamp=timestamp_list,
metadata=meta,
problematic_files=problematic_files_objs,
calibrated_data=None,
dataset=dataset,
)
# return
return ret_obj
Classes
class ReadManager
-
The ReadManager object is initialized within every PyUCalgarySRS.data object. It acts as a way to access the submodules and carry over configuration information in the super class.
Expand source code
class ReadManager: """ The ReadManager object is initialized within every PyUCalgarySRS.data object. It acts as a way to access the submodules and carry over configuration information in the super class. """ __VALID_THEMIS_READFILE_DATASETS = ["THEMIS_ASI_RAW"] __VALID_REGO_READFILE_DATASETS = ["REGO_RAW"] __VALID_TREX_NIR_READFILE_DATASETS = ["TREX_NIR_RAW"] __VALID_TREX_BLUE_READFILE_DATASETS = ["TREX_BLUE_RAW"] __VALID_TREX_RGB_READFILE_DATASETS = ["TREX_RGB_RAW_NOMINAL", "TREX_RGB_RAW_BURST"] __VALID_SKYMAP_READFILE_DATASETS = [ "REGO_SKYMAP_IDLSAV", "THEMIS_ASI_SKYMAP_IDLSAV", "TREX_NIR_SKYMAP_IDLSAV", "TREX_RGB_SKYMAP_IDLSAV", "TREX_BLUE_SKYMAP_IDLSAV", ] __VALID_CALIBRATION_READFILE_DATASETS = [ "REGO_CALIBRATION_RAYLEIGHS_IDLSAV", "REGO_CALIBRATION_FLATFIELD_IDLSAV", "TREX_NIR_CALIBRATION_RAYLEIGHS_IDLSAV", "TREX_NIR_CALIBRATION_FLATFIELD_IDLSAV", "TREX_BLUE_CALIBRATION_RAYLEIGHS_IDLSAV", "TREX_BLUE_CALIBRATION_FLATFIELD_IDLSAV", ] __VALID_GRID_READFILE_DATASETS = [ "THEMIS_ASI_GRID_MOSV001", "THEMIS_ASI_GRID_MOSU001", "REGO_GRID_MOSV001", "TREX_RGB_GRID_MOSV001", "TREX_NIR_GRID_MOSV001", "TREX_BLUE_GRID_MOSV001", "TREX_RGB5577_GRID_MOSV001", ] def __init__(self): pass def list_supported_datasets(self) -> List[str]: """ List the datasets which have file reading capabilities supported. Returns: A list of the dataset names with file reading support. """ supported_datasets = [] for var in dir(self): var_lower = var.lower() if ("valid" in var_lower and "readfile_datasets" in var_lower): for dataset in getattr(self, var): supported_datasets.append(dataset) supported_datasets = sorted(supported_datasets) return supported_datasets def is_supported(self, dataset_name: str) -> bool: """ Check if a given dataset has file reading support. Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform have special readfile routines in this library. This is because some datasets are in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave it up to the user to open these basic files in whichever way they prefer. Use the `list_supported_read_datasets()` function to see all datasets that have special file reading functionality in this library. Args: dataset_name (str): The dataset name to check if file reading is supported. This parameter is required. Returns: Boolean indicating if file reading is supported. """ supported_datasets = self.list_supported_datasets() if (dataset_name in supported_datasets): return True else: return False def read(self, dataset: Dataset, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False) -> Data: """ Read in data files for a given dataset. Note that only one type of dataset's data should be read in using a single call. Args: dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is required. file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSUnsupportedReadError: an unsupported dataset was used when trying to read files. pyucalgarysrs.exceptions.SRSError: a generic read error was encountered Notes: --------- For users who are familiar with the themis-imager-readfile and trex-imager-readfile libraries, the read function provides a near-identical usage. Further improvements have been integrated, and those libraries are anticipated to be deprecated at some point in the future. """ # verify dataset is valid if (dataset is None): raise SRSUnsupportedReadError("Must supply a dataset. If not know, please use the srs.data.readers.read_<specific_routine>() function") # read data using the appropriate readfile routine if (dataset.name in self.__VALID_THEMIS_READFILE_DATASETS): return self.read_themis(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_REGO_READFILE_DATASETS): return self.read_rego(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_NIR_READFILE_DATASETS): return self.read_trex_nir(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_BLUE_READFILE_DATASETS): return self.read_trex_blue(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_RGB_READFILE_DATASETS): return self.read_trex_rgb(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_SKYMAP_READFILE_DATASETS): return self.read_skymap(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_CALIBRATION_READFILE_DATASETS): return self.read_calibration(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_GRID_READFILE_DATASETS): return self.read_grid(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) else: raise SRSUnsupportedReadError("Dataset does not have a supported read function") def read_themis(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in THEMIS ASI raw data (stream0 full.pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_themis( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_rego(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in REGO raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_rego( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_trex_nir(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx near-infrared (NIR) raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_nir( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to appropriate return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_trex_blue(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx Blueline raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_blue( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_trex_rgb(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx RGB raw data (stream0 h5, stream0.burst png.tar, unstable stream0 and stream0.colour pgm* and png*). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_rgb( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: if ("image_request_start_timestamp" in m): timestamp_list.append(datetime.datetime.strptime(m["image_request_start_timestamp"], "%Y-%m-%d %H:%M:%S.%f UTC")) elif ("Image request start" in m): timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) else: raise SRSError("Unexpected timestamp metadata format") # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_trex_spectrograph(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx Spectrograph raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_spectrograph( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj def read_skymap( self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None, ) -> Data: """ Read in UCalgary skymap files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. quiet (bool): Do not print out errors while reading skymap files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Skymap` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data = func_read_skymap( file_list, n_parallel=n_parallel, quiet=quiet, ) # convert to return object skymap_objs = [] for item in data: # init item item_recarray = item["skymap"][0] # parse valid start and end times into datetimes date_generated_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_generated.decode(), "%a %b %d %H:%M:%S %Y") # parse filename into several values filename_split = os.path.basename(item["filename"]).split('_') filename_times_split = filename_split[3].split('-') valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d") valid_interval_stop_dt = None if (filename_times_split[1] != '+'): valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d") # parse date time used into datetime date_time_used_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_time_used.decode(), "%Y%m%d_UT%H") # determine the version version_str = os.path.splitext(item["filename"])[0].split('_')[-1] # create generation info dictionary generation_info_obj = SkymapGenerationInfo( author=item_recarray.generation_info[0].author.decode(), ccd_center=item_recarray.generation_info[0].ccd_center, code_used=item_recarray.generation_info[0].code_used.decode(), data_loc=item_recarray.generation_info[0].data_loc.decode(), date_generated=date_generated_dt, date_time_used=date_time_used_dt, img_flip=item_recarray.generation_info[0].img_flip, optical_orientation=item_recarray.generation_info[0].optical_orientation, optical_projection=item_recarray.generation_info[0].optical_projection, pixel_aspect_ratio=item_recarray.generation_info[0].pixel_aspect_ratio, valid_interval_start=valid_interval_start_dt, valid_interval_stop=valid_interval_stop_dt, ) # add in bytscl_values parameter # # NOTE: bytscl_values was not present in early THEMIS skymap files, so # we conditionally add it if ("bytscl_values" in item_recarray.generation_info[0].dtype.names): generation_info_obj.bytscl_values = item_recarray.generation_info[0].bytscl_values # flip certain things full_elevation_flipped = np.flip(item_recarray.full_elevation, axis=0) full_azimuth_flipped = np.flip(item_recarray.full_azimuth, axis=0) full_map_latitude_flipped = np.flip(item_recarray.full_map_latitude, axis=1) full_map_longitude_flipped = np.flip(item_recarray.full_map_longitude, axis=1) if ("REGO" in item["filename"]): # flip e/w too, but just for REGO (since we do this to the raw data too) full_elevation_flipped = np.flip(full_elevation_flipped, axis=1) full_azimuth_flipped = np.flip(full_azimuth_flipped, axis=1) full_map_latitude_flipped = np.flip(full_map_latitude_flipped, axis=2) full_map_longitude_flipped = np.flip(full_map_longitude_flipped, axis=2) # create object skymap_obj = Skymap( filename=item["filename"], project_uid=item_recarray.project_uid.decode(), site_uid=item_recarray.site_uid.decode(), imager_uid=item_recarray.imager_uid.decode(), site_map_latitude=item_recarray.site_map_latitude, site_map_longitude=item_recarray.site_map_longitude, site_map_altitude=item_recarray.site_map_altitude, full_elevation=full_elevation_flipped, full_azimuth=full_azimuth_flipped, full_map_altitude=item_recarray.full_map_altitude, full_map_latitude=full_map_latitude_flipped, full_map_longitude=full_map_longitude_flipped, version=version_str, generation_info=generation_info_obj, ) # append object skymap_objs.append(skymap_obj) # cast into data object data_obj = Data( data=skymap_objs, timestamp=[], metadata=[], problematic_files=[], calibrated_data=None, dataset=dataset, ) # return return data_obj def read_calibration( self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None, ) -> Data: """ Read in UCalgary calibration files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. quiet (bool): Do not print out errors while reading calibration files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Calibration` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data = func_read_calibration( file_list, n_parallel=n_parallel, quiet=quiet, ) # convert to return object calibration_objs = [] for item in data: # init item_filename = item["filename"] # determine the version version_str = os.path.splitext(item_filename)[0].split('_')[-1] # parse filename into several values filename_split = os.path.basename(item_filename).split('_') filename_times_split = filename_split[3].split('-') valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d") valid_interval_stop_dt = None if (filename_times_split[1] != '+'): valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d") # determine the detector UID detector_uid = filename_split[2] file_type = filename_split[1].lower() flat_field_multiplier_value = None rayleighs_perdn_persecond_value = None if (file_type == "flatfield"): for key in item.keys(): if ("flat_field_multiplier" in key): # flip vertically flat_field_multiplier_value = np.flip(item[key], axis=0) # flip horizontally, if REGO if ("REGO" in item_filename): flat_field_multiplier_value = np.flip(flat_field_multiplier_value, axis=1) break elif (file_type == "rayleighs"): for key in item.keys(): if ("rper_dnpersecond" in key): rayleighs_perdn_persecond_value = item[key] break # set input data dir and skymap filename (may exist in the calibration file, may not) author_str = None input_data_dir_str = None skymap_filename_str = None if ("author" in item): author_str = item["author"].decode() if ("input_data_dir" in item): input_data_dir_str = item["input_data_dir"].decode() if ("skymap_filename" in item): skymap_filename_str = item["skymap_filename"].decode() # set generation info object generation_info_obj = CalibrationGenerationInfo( author=author_str, input_data_dir=input_data_dir_str, skymap_filename=skymap_filename_str, valid_interval_start=valid_interval_start_dt, valid_interval_stop=valid_interval_stop_dt, ) # create object calibration_obj = Calibration( filename=item_filename, version=version_str, dataset=dataset, detector_uid=detector_uid, flat_field_multiplier=flat_field_multiplier_value, rayleighs_perdn_persecond=rayleighs_perdn_persecond_value, generation_info=generation_info_obj, ) # append object calibration_objs.append(calibration_obj) # cast into data object data_obj = Data( data=calibration_objs, timestamp=[], metadata=[], problematic_files=[], calibrated_data=None, dataset=dataset, ) # return return data_obj def read_grid(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in grid files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data_dict, meta, problematic_files = func_read_grid( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # create grid data object grid_data_obj = GridData( grid=data_dict["grid"], # type: ignore fill_value=float(meta[0]["fill_value"]), source_info=GridSourceInfoData(confidence=data_dict["source_info"]["confidence"]), # type: ignore ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for t in data_dict["timestamp"]: # type: ignore timestamp_list.append(datetime.datetime.strptime(t.decode(), "%Y-%m-%d %H:%M:%S UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=grid_data_obj, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
Methods
def is_supported(self, dataset_name: str) ‑> bool
-
Check if a given dataset has file reading support.
Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform have special readfile routines in this library. This is because some datasets are in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave it up to the user to open these basic files in whichever way they prefer. Use the
list_supported_read_datasets()
function to see all datasets that have special file reading functionality in this library.Args
dataset_name
:str
- The dataset name to check if file reading is supported. This parameter is required.
Returns
Boolean indicating if file reading is supported.
Expand source code
def is_supported(self, dataset_name: str) -> bool: """ Check if a given dataset has file reading support. Not all datasets available in the UCalgary Space Remote Sensing Open Data Platform have special readfile routines in this library. This is because some datasets are in basic formats such as JPG or PNG, so unique functions aren't necessary. We leave it up to the user to open these basic files in whichever way they prefer. Use the `list_supported_read_datasets()` function to see all datasets that have special file reading functionality in this library. Args: dataset_name (str): The dataset name to check if file reading is supported. This parameter is required. Returns: Boolean indicating if file reading is supported. """ supported_datasets = self.list_supported_datasets() if (dataset_name in supported_datasets): return True else: return False
def list_supported_datasets(self) ‑> List[str]
-
List the datasets which have file reading capabilities supported.
Returns
A list of the dataset names with file reading support.
Expand source code
def list_supported_datasets(self) -> List[str]: """ List the datasets which have file reading capabilities supported. Returns: A list of the dataset names with file reading support. """ supported_datasets = [] for var in dir(self): var_lower = var.lower() if ("valid" in var_lower and "readfile_datasets" in var_lower): for dataset in getattr(self, var): supported_datasets.append(dataset) supported_datasets = sorted(supported_datasets) return supported_datasets
def read(self, dataset: Dataset, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False) ‑> Data
-
Read in data files for a given dataset. Note that only one type of dataset's data should be read in using a single call.
Args
dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is required.
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSUnsupportedReadError
- an unsupported dataset was used when trying to read files.
SRSError
- a generic read error was encountered
Notes:
For users who are familiar with the themis-imager-readfile and trex-imager-readfile libraries, the read function provides a near-identical usage. Further improvements have been integrated, and those libraries are anticipated to be deprecated at some point in the future.
Expand source code
def read(self, dataset: Dataset, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False) -> Data: """ Read in data files for a given dataset. Note that only one type of dataset's data should be read in using a single call. Args: dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is required. file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSUnsupportedReadError: an unsupported dataset was used when trying to read files. pyucalgarysrs.exceptions.SRSError: a generic read error was encountered Notes: --------- For users who are familiar with the themis-imager-readfile and trex-imager-readfile libraries, the read function provides a near-identical usage. Further improvements have been integrated, and those libraries are anticipated to be deprecated at some point in the future. """ # verify dataset is valid if (dataset is None): raise SRSUnsupportedReadError("Must supply a dataset. If not know, please use the srs.data.readers.read_<specific_routine>() function") # read data using the appropriate readfile routine if (dataset.name in self.__VALID_THEMIS_READFILE_DATASETS): return self.read_themis(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_REGO_READFILE_DATASETS): return self.read_rego(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_NIR_READFILE_DATASETS): return self.read_trex_nir(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_BLUE_READFILE_DATASETS): return self.read_trex_blue(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_TREX_RGB_READFILE_DATASETS): return self.read_trex_rgb(file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_SKYMAP_READFILE_DATASETS): return self.read_skymap(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_CALIBRATION_READFILE_DATASETS): return self.read_calibration(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) elif (dataset.name in self.__VALID_GRID_READFILE_DATASETS): return self.read_grid(file_list, n_parallel=n_parallel, quiet=quiet, dataset=dataset) else: raise SRSUnsupportedReadError("Dataset does not have a supported read function")
def read_calibration(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in UCalgary calibration files.
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
quiet
:bool
- Do not print out errors while reading calibration files, if any are encountered.
Any files that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedCalibration
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_calibration( self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None, ) -> Data: """ Read in UCalgary calibration files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. quiet (bool): Do not print out errors while reading calibration files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Calibration` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data = func_read_calibration( file_list, n_parallel=n_parallel, quiet=quiet, ) # convert to return object calibration_objs = [] for item in data: # init item_filename = item["filename"] # determine the version version_str = os.path.splitext(item_filename)[0].split('_')[-1] # parse filename into several values filename_split = os.path.basename(item_filename).split('_') filename_times_split = filename_split[3].split('-') valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d") valid_interval_stop_dt = None if (filename_times_split[1] != '+'): valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d") # determine the detector UID detector_uid = filename_split[2] file_type = filename_split[1].lower() flat_field_multiplier_value = None rayleighs_perdn_persecond_value = None if (file_type == "flatfield"): for key in item.keys(): if ("flat_field_multiplier" in key): # flip vertically flat_field_multiplier_value = np.flip(item[key], axis=0) # flip horizontally, if REGO if ("REGO" in item_filename): flat_field_multiplier_value = np.flip(flat_field_multiplier_value, axis=1) break elif (file_type == "rayleighs"): for key in item.keys(): if ("rper_dnpersecond" in key): rayleighs_perdn_persecond_value = item[key] break # set input data dir and skymap filename (may exist in the calibration file, may not) author_str = None input_data_dir_str = None skymap_filename_str = None if ("author" in item): author_str = item["author"].decode() if ("input_data_dir" in item): input_data_dir_str = item["input_data_dir"].decode() if ("skymap_filename" in item): skymap_filename_str = item["skymap_filename"].decode() # set generation info object generation_info_obj = CalibrationGenerationInfo( author=author_str, input_data_dir=input_data_dir_str, skymap_filename=skymap_filename_str, valid_interval_start=valid_interval_start_dt, valid_interval_stop=valid_interval_stop_dt, ) # create object calibration_obj = Calibration( filename=item_filename, version=version_str, dataset=dataset, detector_uid=detector_uid, flat_field_multiplier=flat_field_multiplier_value, rayleighs_perdn_persecond=rayleighs_perdn_persecond_value, generation_info=generation_info_obj, ) # append object calibration_objs.append(calibration_obj) # cast into data object data_obj = Data( data=calibration_objs, timestamp=[], metadata=[], problematic_files=[], calibrated_data=None, dataset=dataset, ) # return return data_obj
def read_grid(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in grid files.
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_grid(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in grid files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data_dict, meta, problematic_files = func_read_grid( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # create grid data object grid_data_obj = GridData( grid=data_dict["grid"], # type: ignore fill_value=float(meta[0]["fill_value"]), source_info=GridSourceInfoData(confidence=data_dict["source_info"]["confidence"]), # type: ignore ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for t in data_dict["timestamp"]: # type: ignore timestamp_list.append(datetime.datetime.strptime(t.decode(), "%Y-%m-%d %H:%M:%S UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=grid_data_obj, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_rego(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in REGO raw data (stream0 pgm* files).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_rego(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in REGO raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_rego( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_skymap(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in UCalgary skymap files.
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
quiet
:bool
- Do not print out errors while reading skymap files, if any are encountered. Any
files that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedSkymap
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_skymap( self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, quiet: bool = False, dataset: Optional[Dataset] = None, ) -> Data: """ Read in UCalgary skymap files. Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. quiet (bool): Do not print out errors while reading skymap files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Skymap` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data data = func_read_skymap( file_list, n_parallel=n_parallel, quiet=quiet, ) # convert to return object skymap_objs = [] for item in data: # init item item_recarray = item["skymap"][0] # parse valid start and end times into datetimes date_generated_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_generated.decode(), "%a %b %d %H:%M:%S %Y") # parse filename into several values filename_split = os.path.basename(item["filename"]).split('_') filename_times_split = filename_split[3].split('-') valid_interval_start_dt = datetime.datetime.strptime(filename_times_split[0], "%Y%m%d") valid_interval_stop_dt = None if (filename_times_split[1] != '+'): valid_interval_stop_dt = datetime.datetime.strptime(filename_times_split[1], "%Y%m%d") # parse date time used into datetime date_time_used_dt = datetime.datetime.strptime(item_recarray.generation_info[0].date_time_used.decode(), "%Y%m%d_UT%H") # determine the version version_str = os.path.splitext(item["filename"])[0].split('_')[-1] # create generation info dictionary generation_info_obj = SkymapGenerationInfo( author=item_recarray.generation_info[0].author.decode(), ccd_center=item_recarray.generation_info[0].ccd_center, code_used=item_recarray.generation_info[0].code_used.decode(), data_loc=item_recarray.generation_info[0].data_loc.decode(), date_generated=date_generated_dt, date_time_used=date_time_used_dt, img_flip=item_recarray.generation_info[0].img_flip, optical_orientation=item_recarray.generation_info[0].optical_orientation, optical_projection=item_recarray.generation_info[0].optical_projection, pixel_aspect_ratio=item_recarray.generation_info[0].pixel_aspect_ratio, valid_interval_start=valid_interval_start_dt, valid_interval_stop=valid_interval_stop_dt, ) # add in bytscl_values parameter # # NOTE: bytscl_values was not present in early THEMIS skymap files, so # we conditionally add it if ("bytscl_values" in item_recarray.generation_info[0].dtype.names): generation_info_obj.bytscl_values = item_recarray.generation_info[0].bytscl_values # flip certain things full_elevation_flipped = np.flip(item_recarray.full_elevation, axis=0) full_azimuth_flipped = np.flip(item_recarray.full_azimuth, axis=0) full_map_latitude_flipped = np.flip(item_recarray.full_map_latitude, axis=1) full_map_longitude_flipped = np.flip(item_recarray.full_map_longitude, axis=1) if ("REGO" in item["filename"]): # flip e/w too, but just for REGO (since we do this to the raw data too) full_elevation_flipped = np.flip(full_elevation_flipped, axis=1) full_azimuth_flipped = np.flip(full_azimuth_flipped, axis=1) full_map_latitude_flipped = np.flip(full_map_latitude_flipped, axis=2) full_map_longitude_flipped = np.flip(full_map_longitude_flipped, axis=2) # create object skymap_obj = Skymap( filename=item["filename"], project_uid=item_recarray.project_uid.decode(), site_uid=item_recarray.site_uid.decode(), imager_uid=item_recarray.imager_uid.decode(), site_map_latitude=item_recarray.site_map_latitude, site_map_longitude=item_recarray.site_map_longitude, site_map_altitude=item_recarray.site_map_altitude, full_elevation=full_elevation_flipped, full_azimuth=full_azimuth_flipped, full_map_altitude=item_recarray.full_map_altitude, full_map_latitude=full_map_latitude_flipped, full_map_longitude=full_map_longitude_flipped, version=version_str, generation_info=generation_info_obj, ) # append object skymap_objs.append(skymap_obj) # cast into data object data_obj = Data( data=skymap_objs, timestamp=[], metadata=[], problematic_files=[], calibrated_data=None, dataset=dataset, ) # return return data_obj
def read_themis(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in THEMIS ASI raw data (stream0 full.pgm* files).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_themis(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in THEMIS ASI raw data (stream0 full.pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_themis( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_trex_blue(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in TREx Blueline raw data (stream0 pgm* files).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_trex_blue(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx Blueline raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_blue( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_trex_nir(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in TREx near-infrared (NIR) raw data (stream0 pgm* files).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_trex_nir(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx near-infrared (NIR) raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_nir( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to appropriate return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_trex_rgb(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in TREx RGB raw data (stream0 h5, stream0.burst png.tar, unstable stream0 and stream0.colour pgm and png).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_trex_rgb(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx RGB raw data (stream0 h5, stream0.burst png.tar, unstable stream0 and stream0.colour pgm* and png*). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_rgb( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: if ("image_request_start_timestamp" in m): timestamp_list.append(datetime.datetime.strptime(m["image_request_start_timestamp"], "%Y-%m-%d %H:%M:%S.%f UTC")) elif ("Image request start" in m): timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) else: raise SRSError("Unexpected timestamp metadata format") # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj
def read_trex_spectrograph(self, file_list: Union[List[str], List[pathlib.Path], str, pathlib.Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) ‑> Data
-
Read in TREx Spectrograph raw data (stream0 pgm* files).
Args
file_list
:List[str], List[Path], str, Path
- The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required.
n_parallel
:int
- Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional.
first_record
:bool
- Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional.
no_metadata
:bool
- Skip reading of metadata. This is a minor optimization if the metadata is not needed.
Default is
False
. This parameter is optional. quiet
:bool
- Do not print out errors while reading data files, if any are encountered. Any files
that encounter errors will be, as usual, accessible via the
problematic_files
attribute of the returnedData
object. This parameter is optional. dataset
:Dataset
- The dataset object for which the files are associated with. This parameter is optional.
Returns
A
Data
object containing the data read in, among other values.Raises
SRSError
- a generic read error was encountered
Expand source code
def read_trex_spectrograph(self, file_list: Union[List[str], List[Path], str, Path], n_parallel: int = 1, first_record: bool = False, no_metadata: bool = False, quiet: bool = False, dataset: Optional[Dataset] = None) -> Data: """ Read in TREx Spectrograph raw data (stream0 pgm* files). Args: file_list (List[str], List[Path], str, Path): The files to read in. Absolute paths are recommended, but not technically necessary. This can be a single string for a file, or a list of strings to read in multiple files. This parameter is required. n_parallel (int): Number of data files to read in parallel using multiprocessing. Default value is 1. Adjust according to your computer's available resources. This parameter is optional. first_record (bool): Only read in the first record in each file. This is the same as the first_frame parameter in the themis-imager-readfile and trex-imager-readfile libraries, and is a read optimization if you only need one image per minute, as opposed to the full temporal resolution of data (e.g., 3sec cadence). This parameter is optional. no_metadata (bool): Skip reading of metadata. This is a minor optimization if the metadata is not needed. Default is `False`. This parameter is optional. quiet (bool): Do not print out errors while reading data files, if any are encountered. Any files that encounter errors will be, as usual, accessible via the `problematic_files` attribute of the returned `pyucalgarysrs.data.classes.Data` object. This parameter is optional. dataset (pyucalgarysrs.data.classes.Dataset): The dataset object for which the files are associated with. This parameter is optional. Returns: A `pyucalgarysrs.data.classes.Data` object containing the data read in, among other values. Raises: pyucalgarysrs.exceptions.SRSError: a generic read error was encountered """ # read data img, meta, problematic_files = func_read_trex_spectrograph( file_list, n_parallel=n_parallel, first_record=first_record, no_metadata=no_metadata, quiet=quiet, ) # generate timestamp array timestamp_list = [] if (no_metadata is False): for m in meta: timestamp_list.append(datetime.datetime.strptime(m["Image request start"], "%Y-%m-%d %H:%M:%S.%f UTC")) # convert to return type problematic_files_objs = [] for p in problematic_files: problematic_files_objs.append(ProblematicFile(p["filename"], error_message=p["error_message"], error_type="error")) ret_obj = Data( data=img, timestamp=timestamp_list, metadata=meta, problematic_files=problematic_files_objs, calibrated_data=None, dataset=dataset, ) # return return ret_obj